Forecasts to optimize inventories through neural networks in SMEs

Authors

  • Marco Antonio Acosta Mendizabal
  • Iván Azamar Palma
  • Claudia Guzman Barrera
  • Virginia Aguilar Guerrero
  • Consuelo Ceron Rodriguez
  • Martha Guadalupe Morales Huerta
  • Arnulfo Romero Chavez
  • Cristóbal Estrada Acosta

DOI:

https://doi.org/10.46932/sfjdv4n10-004

Keywords:

artificial neural networks, SMEs, inventories

Abstract

Currently, with globalization and competitiveness, SMEs must make quality forecasts in their inventories and merchandise replacement. Therefore, artificial neural networks are an important technique in the forecasting of linear time series, which allows companies to reduce their inventory costs and improve service to their customers. With the training of the networks, it will be possible to have criteria . aimed at solving this type of problems with the help of programmable algorithms. 

...

References

Abdel-Aleem, A., El-Sharief, A. M., Hassan, A. M., & El-Sebaie, G. M. (2017). Implementation of fuzzy and adaptive neuro-fuzzy inference systems in optimization of production inven- tory problem. Applied Mathematics & Information Sciences, 11(1), 289–298. doi:10.18576/ amis/110135

Ali, S. M., Paul, S. K., Ahsan, K., & Azeem, A. (2011). Forecasting of optimum raw material inventory level using artificial neural network. International Journal of Operations and Quantitative Management, 17(4), 333–348.

Ambukege, G., Justo, G., & Mushi, J. (2017). Neuro fuzzy modelling for prediction of con- sumer price index. International Journal of Artificial Intelligence & Applications, 8(5), 33–44. doi:10.5121/ijaia.2017.8503

Axsater, S. (2006). Using the deterministic EOQ formula in stochastic inventory control.Management Science, 42(6), 830–834. doi:10.1287/mnsc.42.6.830

Bhatnagar, R., & Chee-Chong, T. (2009). Role of logistics in enhancing competitive advantage: A value chain framework for global supply chains. International Journal of Physical Distribution & Logistics Management, 39(3), 202–226. doi:10.1108/096000309109517

Ho, W., Zheng, T., Yildiz, H., & Talluri, S. (2015). Supply chain risk management: A literature review. International Journal of Production Research, 53(16), 5031–5069. doi:10.1080/ 00207543.2015.1030467

Karaboga, D., & Kaya, E. (2018). Adaptive network based fuzzy inference system (ANFIS) training approaches: A comprehensive survey. Artificial Intelligence Review, 1–31.

Kazemi, N., Olugu, E. U., Abdul-Rashid, S. H., & Ghazilla, R. A. R. (2016). A fuzzy EOQ model with backorders and forgetting effect on fuzzy parameters: An empirical study. Computers & Industrial Engineering, 96, 140–148. doi:10.1016/j.cie.2016.03.004

Keshavarz Ghorabaee, M., Zavadskas, E. K., Amiri, M., & Antucheviciene, J. (2016). A new method of assessment based on fuzzy ranking and aggregated weights (AFRAW) for MCDM problems under type-2 fuzzy environment. Economic Computation and Economic Cybernetics Studies and Research, 50(1), 39–68.

Maddah, B., & Noueihed, N. (2017). EOQ holds under stochastic demand, a technical note. Applied Mathematical Modelling, 45, 205–208. doi:10.1016/j.apm.2016.12.026,

Negnevitsky, M. (2011). Artificial intelligence: A guide to intelligent systems. Toronto, Canada: Pearson Education Canada.

Rajab, S., & Sharma, V. (2017). A review on the applications of neuro-fuzzy systems in busi- ness. Artificial Intelligence Review, 49, 481–510.

Roy, T. K., & Maiti, M. (1997). A fuzzy EOQ model with demand—dependent unit cost under limited storage capacity. European Journal of Operational Research, 99(2), 425–432. doi: 10.1016/S0377-2217(96)00163-4

Seker, A., Erol, S., & Botsali, R. (2013). A neuro-fuzzy model for a new hybrid integrated pro- cess planning and scheduling system. Expert Systems with Applications, 40(13), 5341–5351. doi:10.1016/j.eswa.2013.03.043

Sreedevi, R., & Saranga, H. (2017). Uncertainty and supply chain risk: The moderating role of supply chain flexibility in risk mitigation. International Journal of Production Economics, 193, 332–342. doi:10.1016/j.ijpe.2017.07.024

Tahmasebi, P., & Hezarkhani, A. (2010). Application of adaptive neuro-fuzzy inference system for grade estimation; case study, Sarcheshmeh porphyry copper deposit, Kerman, Iran. Australian Journal of Basic and Applied Sciences, 4(3), 408–420.

Taleizadeh, A. A., Khanbaglo, M. P. S., & C´ardenas-Barr´on, L. E. (2016). An EOQ inventory model with partial backordering and reparation of imperfect products. International Journal of Production Economics, 182, 418–434. doi:10.1016/j.ijpe.2016.09.013

Teksan, Z. M., & Geunes, J. (2016). An EOQ model with price-dependent supply and demand.

Yazdani-Chamzini, A., Yakhchali, S. H., Volungeviˇciene_, D., & Zavadskas, E. K. (2012). Forecasting gold price changes by using adaptive network fuzzy inference system. Journal of Business Economics and Management, 13(5), 994–1100. doi:10.3846/16111699.2012.683808

Yazdani, M., Zarate, P., Coulibaly, A., & Zavadskas, E. K. (2017). A group decision making support system in logistics and supply chain management. Expert Systems with Applications, 88, 376–392. doi:10.1016/j.eswa.2017.07.014

Downloads

Published

2023-12-11

How to Cite

Mendizabal, M. A. A., Palma, I. A., Barrera, C. G., Guerrero, V. A., Rodriguez, C. C., Huerta, M. G. M., Chavez, A. R., & Acosta, C. E. (2023). Forecasts to optimize inventories through neural networks in SMEs. South Florida Journal of Development, 4(10), 3787–3800. https://doi.org/10.46932/sfjdv4n10-004

Most read articles by the same author(s)