Synthesis and characterization of PVDF/PMMA composites


  • José Raymundo Leppe-Nerey
  • Fernando Zenaido Sierra-Espinosa
  • María Elena Nicho Díaz
  • Roberto Alan Beltrán Vargas
  • Roberto Carlos Beltrán Vargas
  • Francisco Hernández
  • Marcos Fuentes



Polymer blends, Poly(vinylidene fluoride), Poly(methyl methacrylate), Power generation, Piezoelectric energy harvesting


Polyvinylidene fluoride (PVDF) has interesting properties for piezoelectricity, making it a suitable material for energy harvesting applications. Combined with another polymer, polymethylmethacrylate (PMMA), it forms a composite with greater efficiency in energy conversion. This article describes how a PVDF/PMMA composite with variable concentration of the constituents is synthetized and characterized. The versatility of material formation represents an opportunity to reduce process costs improving performance. The goal is to establish a proven procedure that confirms the relevance of the PVDF/PMMA composite in energy conversion depending on the specific composition and load for tire energy harvesting.


B. Scrosati, Applications of Electroactive Polymers, no. July. Dordrecht: Springer Netherlands, 1993. doi: 10.1007/978-94-011-1568-1.

F. M. Gray, Polymer Electrolytes. Great Britain: Royal Society of Chemistry, 1997.

P. Saxena and P. Shukla, “A comparative analysis of the basic properties and applications of poly (vinylidene fluoride) (PVDF) and poly (methyl methacrylate) (PMMA),” Polymer Bulletin, vol. 79, no. 8, pp. 5635–5665, Aug. 2022, doi: 10.1007/s00289-021-03790-y.

C. Rameshkumar, S. Sarojini, K. Naresh, and Subalakshmi, “Preparation and characterization of pristine PMMA and PVDF thin film using solution casting process for optoelectronic devices,” Journal of Surface Science and Technology, vol. 33, no. 1–2, pp. 12–18, 2017, doi: 10.18311/jsst/2017/6215.

C. Wang, J. Zhao, Q. Li, and Y. Li, “Optimization design and experimental investigation of piezoelectric energy harvesting devices for pavement,” Appl Energy, vol. 229, no. March, pp. 18–30, 2018, doi: 10.1016/j.apenergy.2018.07.036.

S. Das Mahapatra et al., “Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials,” Advanced Science, vol. 8, no. 17, 2021, doi: 10.1002/advs.202100864.

A. Majeed, “Piezoelectric Energy Harvesting for Powering Micro Electromechanical Systems (MEMS),” The Journal of Undergraduate Research at the University of Illinois at Chicago, vol. 8, no. 1, pp. 3–7, 2015, doi: 10.5210/jur.v8i1.7534.

M. Khalili, A. B. Biten, G. Vishwakarma, S. Ahmed, and A. T. Papagiannakis, “Electro-mechanical characterization of a piezoelectric energy harvester,” Appl Energy, vol. 253, no. May, p. 113585, 2019, doi: 10.1016/j.apenergy.2019.113585.

J. Y. Song, Y. Y. Wang, and C. C. Wan, “Review of gel-type polymer electrolytes for lithium-ion batteries,” J Power Sources, vol. 77, no. 2, pp. 183–197, Feb. 1999, doi: 10.1016/S0378-7753(98)00193-1.

J. R. Leppe-Nerey, F. Z. Sierra-Espinosa, M. E. Nicho, and M. A. Basurto-Pensado, “Power characteristics of a 70/30 wt.% PVDF/PMMA film in roadway electricity generation,” Sens Actuators A Phys, vol. 317, p. 112461, Jan. 2021, doi: 10.1016/j.sna.2020.112461.

J. R. Leppe-Nerey, M. E. Nicho, F. Z. Sierra-Espinosa, F. Hernández-Guzmán, and M. Fuentes-Pérez, “Experimental study of piezoelectric polymeric film as energy harvester,” Materials Science and Engineering: B, vol. 272, no. June, p. 115366, Oct. 2021, doi: 10.1016/j.mseb.2021.115366.

S. Gupta et al., “Multifunctional and Flexible Polymeric Nanocomposite Films with Improved Ferroelectric and Piezoelectric Properties for Energy Generation Devices,” ACS Appl Energy Mater, vol. 2, no. 9, pp. 6364–6374, 2019, doi: 10.1021/acsaem.9b01000.

D. A. Van Den Ende, H. J. Van De Wiel, W. A. Groen, and S. Van Der Zwaag, “Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites,” Smart Mater Struct, vol. 21, no. 1, 2012, doi: 10.1088/0964-1726/21/1/015011.

C. A. Varela and F. Z. Sierra, “Cyclic strain rate in tyres as power source to augment automobile autonomy,” International Journal of Vehicle Design, vol. 65, no. 2–3, pp. 270–285, 2014, doi: 10.1504/IJVD.2014.060806.

A. M. Stephan, “Review on gel polymer electrolytes for lithium batteries,” Eur Polym J, vol. 42, no. 1, pp. 21–42, 2006, doi: 10.1016/j.eurpolymj.2005.09.017.

Y. Liu et al., “High Energy Density and Temperature Stability in PVDF/PMMA via In Situ Polymerization Blending,” Front Chem, vol. 10, no. May, pp. 1–9, 2022, doi: 10.3389/fchem.2022.902487.

J.R. Leppe-Nerey, F.Z. Sierra-Espinosa, M.E. Nicho, M.A. Basurto, J.A. Rodríguez, Fabrication of PVDF/PMMA polymer for sustainable energy harvesting, Submitted to J Sol Energy Research Updates, 2023.

I. S. Elashmawi and N. A. Hakeem, “Effect of PMMA addition on characterization and morphology of PVDF,” Polym Eng Sci, vol. 48, no. 5, pp. 895–901, May 2008, doi: 10.1002/pen.21032.

C. Zhang et al., “Enhancement of Energy Storage Performance of PMMA/PVDF Composites by Changing the Crystalline Phase through Heat Treatment,” Polymers (Basel), vol. 15, no. 11, 2023, doi: 10.3390/polym15112486.

M. Vázquez Rodríguez, F. J. Jiménez Martínez, and J. de Frutos, “Banco de ensayos para materiales piezoeléctricos en aplicaciones viales,” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 50, no. 2, pp. 65–72, Apr. 2011, doi: 10.3989/cyv.092011.




How to Cite

Leppe-Nerey, J. R., Sierra-Espinosa, F. Z., Díaz, M. E. N., Vargas, R. A. B., Vargas, R. C. B., Hernández, F., & Fuentes, M. (2023). Synthesis and characterization of PVDF/PMMA composites. South Florida Journal of Development, 4(10), 3763–3774.