Numerical simulation of flow around circular cylinder near a plane wall: effects of wall proximity, boundary layer and reynolds number
DOI:
https://doi.org/10.46932/sfjdv4n5-021Keywords:
circular cylinder, vortex shedding, SST-SAS turbulence modelAbstract
The cylindrical structures in close proximity to a solid surface have diverse and numerous applications within current engineering. While the flow dynamics around an isolated circular cylinder located in a uniform flow are reasonably well understood, this is not the case when the cylinder is positioned near a plane wall. This particular configuration is studied using computational fluid dynamics (CFD) through the Fluent code, which implements the finite volume method. For this purpose, a two-dimensional and transient flow is carry out using the SST-SAS turbulence model. The effects of changing the separation (G) between the cylinder (with diameter D) and the wall are analyzed for different Reynolds numbers and different boundary layer thicknesses. The lift and drag coefficients and the behavior of vortex shedding (Strouhal number, St) are examined. The numerical results are compared with values available in the literature from experimental wind tunnel tests, showing that both the drag and lift coefficients strongly depend on the separation ratio (G/D) and are affected by the boundary layer thicknesses.
References
Bearman, P.W., Zdravkovich, M.M., Flow around a circular cylinder near a plane boundary. Journal of Fluid Mechanics, 89, 33-47, 1978.
Buresti, G., Lanciotti, A., Mean and fluctuating forces on a circular cylinder in cross flow near a plane surface. Journal of Wind Engineering and Industrial Aerodynamics, 41, 639-650, 1992.
Egorov, Y., Menter, F., Development and application of SST-SAS turbulence model in the DESIDER project. Notes on Numerical Fluid Mechanics and Multidisciplinary Design 97, 261- 270, 2008.
Grioni, M., Elaskar, S., Mirasso, A., Simulación de flujo transitorio 2D alrededor de un cilindro circular horizintal considerando el efecto suelo, Mecánica Computacional, 35, pp. 873-885, 2017.
Grioni, M., Elaskar, S., Mirasso, A., Análisis transitorio de la interferencia de flujo entre dos cilindros circulares en disposición tándem, Mecánica Computacional, 36, pp. 1195-1204, 2018a.
Grioni, M., Elaskar, S., Mirasso, A., Scale-Adaptive Simulation of Flow around a Circular Cylinder near a Plane Boundary, Journal of Applied Fluid Mechanics, 6, pp. 1477-1488, 2018b.
Grioni, M., Elaskar, S., Mirasso, A., Bruel, P. Interferencia de flujo entre cilindros circulares en disposición tándem cercanos al suelo, Mecánica Computacional, 37, pp. 1065-1074, 2019.
Grioni, M., Elaskar, S., Mirasso, A., A numerical study of the flow interference between two circular cylinders in tandem by scale-adaptive simulation model, Journal of Applied Fluid Mechanics, 13, pp. 169–183, 2020.
Grioni, M., Bruel, P., Elaskar, S. and Mirasso, A., An application of the scale adapted simulation to the unsteady flow across a tube bundle. International Journal of Heat and Fluid Flow, 96, 109007, 2022a.
Grioni, M. Elaskar, S., Bruel, P., Mirasso, A., Comparación de algoritmos de acoplamiento velocidad-presión para problemas no estacionarios del flujo alrededor de un cilindro circular, 2022 IEEE biennial congress of argentina (ARGENCON), pp. 1-8, 2022b.
Lei, C., Cheng, L., Kavanagh, K., Re-examination of the effect of a plane boundary on force and vortex shedding of a circular cylinder. Journal of Wind Engineering Industrial Aerodynamics, 80, 263–286, 1999.
Menter, F.R., Two-equation eddy viscosity models for engineering applications. AIAA Journal, 32(8): 269–289, 1994.
Menter, F.R., Kuntz, M., Bender, R., A scale-adaptive simulation model for turbulent flow predictions. AIAA Paper 2003-0767, Reno, Nevada, USA, 2003.
Menter, F.R. and Egorov, Y., A scale-adaptive simulation model using two-equation models, Paper AIAA 2005-1095, Reno, Nevada, USA, 2005.
Menter, F., Egorov, Y., The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1: theory and model description. Flow, Turbulence and Combustion. 85 (1), 113–138, 2010.
Patankar, S.V., Numerical heat transfer and fluid flow. Hemisphere, Washington, DC, USA, 1980.
Spalart, P.R., Strategies for turbulence modelling and simulations. International Journal of Heat and Fluid Flow, 21, 252-263, 2000.
Strelets, M., Detached eddy simulation of massively seperated flows. AIAA Pap. 2001-0879, 2001.
Taniguchi, S., Miyakoshi, K., Fluctuating fluid forces acting on a circular cylinder and interference with a plane wall. Experiments in Fluids, 9, 197-204, 1990.