Symmetric stochastic matrices and structured families of models
DOI:
https://doi.org/10.46932/sfjdv4n4-003Keywords:
models, structured families, ANOVA, cross-factorsAbstract
The models in structured families correspond to the treatments of a fixed-effects base model. One then studies the action of the factors of the base design on the fixed effects parameters of the models. The analysis of these families allows the study of the action of cross-factors on cross-factor effects and interactions. When the base model has an orthogonal structure, the model family is said to be orthogonal. A general treatment of the case where the base model has an orthogonal structure is presented and special emphasis is given to structured families of factor models.
References
Areia, A., Séries emparelhadas de estudo, Tese de Doutoramento, Universidade de Évora, 2009.
Areia, A., M. M. Oliveira, & J. T. Mexia, Modelling the Compromise Matrix in STATIS, Methodology, 5, pp. 277-288, 2011.
Dias, C., Modelos e Famílias de Modelos para Matrizes Estocásticas Simétricas, Ph.D. Thesis, Évora University, 2013.
Dias, C., Santos S., Varadinov M., & Mexia J.T., ANOVA Like Analysis for Structured Families of Stochastic Matrices, AIP Proceedings of the 12 International Conference of computational Methods in Sciences and Engineering (ICCMSE 2016), edited by American Institute of Physics, 1790, pp. 140006-1-140006-3, 2016.
Dias, C., Oliveira M. M, Mexia J. T., Models of symmetric stochastic matrices. AIP Conf. Proc. 1479, 1666–1669. Numerical Analysis and Applied Mathematics: International Conference of Numerical Analysis and Applied Mathematics, 19–25, 2012.
Dias, C., Santos C., Varadinov M. and João T. Mexia J. T., ANOVA like analysis for structured families of stochastic matrices. 12th International Conference of Computational Methods in Sciences and Engineering, AIP Conf. Proc. 1790, 140008, 2018.
Escou.er, Y., Le traitement des variables vectorielles, Biometrics, 29, pp. 750-760, 1973.
Escoufier, Y. & L’Hermier H., A Propos de la Comparaison Graphique dês Matrices de Variance, Biom. J., 20(5), 477-483, 1978.
Foucart, T., Suites de Tableaux et de Sous-Tableaux, Revue de Statistique Appliquée, XXIX 2, 31-42, 1981.
Harville, A., Matrix Algebra from a statistician's perspective, Springer-Verlag, 1998.
Ito, P. K., Robustness of Anova and Macanova Test Procedures, P. R. Krishnaiah (ed), Handbook of Statistics1, Amsterdam: North Holland, pp. 199-236, 1980.
L.Hermier, H., Structuration des tableaux a trois indices de la statisque, Thèse de 3ème cycle, Université de Montpellier, 1976.
Lavit, Ch., Analyse Conjointe de Tableaux quantitatifs, Collection Méthodes +Programmes, Masson, Paris, 1988.
Lavit, Ch., Escou.er, Y., Sabatier, R., Traissac, P., The ACT (Statis Method), Computacional Statistics and Data Analysis. Vol. 18, pp. 97-119, 1994.
Mexia, J., Simultaneous Confidence Intervals. Generalization of the Scheffé Theore,.Trabalhos de Investigação, nº2, Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 1989b.
Mexia, J., Controlled Heterocedasticity, Quotient Vector Spaces and F Tests for Hypotheses on Mean Vectors, Trabalhos de Investigação, no.2, Departamento de Matemática, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, 1989.
Mexia, J. T., Introdução à inferência estatística linear, Centro de Estudos de Matemática Aplicada -Edição Universitárias Lusófonas, Lisboa, 1995.
Oliveira, M. M., Mexia, J., F Tests for Hypothesis on the Structure Vectors of Series, Discussiones Mathematicae.Vol. 19, no. 2, 345-353, 1999.
Oliveira, M. M. and Mexia J. T., AIDS in Portugal: endemic versus epidemic forecasting scenarios for mortality, International Journal of Forecasting, 20, pp.131–137, 2004.
Oliveira M.M., Mexia JT, Modelling series of studies with a common structure, Computacional Statistics and Data Analysis, N.51, pp 5876—5885, 2007.
Salvador, D., Mexia, J. T., Vec type operators and adjusting models for symmetric stochastic matrices, 7th Workshop on Statistics, Mathematics and Computation and 5th International Conference on Risk Analysis, Tomar, 2013.
Scheffé, H., The Analysis of Variance, New York: John Wiley & Sons, 1959.
Schott, J. R., Matrix Analysis for Statistics, Wiley – Interscience, 1997.